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Abstract

A multigrid procedure that makes use of coarse grids generated by the agglomer-

ation of control volumes is advocated as a practical approach for solving the three-

dimensional Euler equations on unstructured grids about complex configurations. It

is shown that the agglomeration procedure can be tailored to achieve certain coarse

grid properties such as the sizes of the coarse grids and aspect ratios of the coarse

grid ceils. The agglomeration is done as a preprocessing step and runs in linear time.

The implications for multigrid of using arbitrary polyhedral coarse grids are discussed.

The agglomeration multigrid technique compares very favorably with existing multigrid

procedures both in terms of convergence rates and elapsed times. The main advantage

of the present approach is the ease with which coarse grids of any desired degree of

coarseness may be generated in three dimensions, without being constrained by con-

siderations of geometry. Inviscid flows over a variety of complex configurations are

computed using the agglomeration multigrid strategy.
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Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.

CThis research was supported by the National Aeronautics and Space Administration under the NASA

contract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.



=

L

I



1 Introduction

Over the last few years, the multigrid method has been demonstrated as an efficient means

for obtaining steady-state solutions to the Euler equations on unstructured meshes in two

and three dimensions [1-9]. The main difficulty with multigrid techniques on unstructured

meshes is the generation of coarse grids. In the case of structured grids, coarse grids are easily

derived from a given fine grid by omitting alternate grid lines in each coordinate direction.

In the case of unstructured grids, three different approaches can be adopted.

The first approach begins with a coarse mesh definition and generates finer grids by

uniform refinement [5, 6]. The advantage is that the inter-grid operators become simple

because of the nesting of grids. There are several disadvantages with this approach. The

first drawback is the dependence of the fine grid point distribution on the coarse levels.

Ideally, the fine grid points should be distributed to capture features of the geometry and

to control the aspect ratios of the grid cells and grid stretching, whereas in this method, the

coarsest grid determines these features. Furthermore, the coarsest level that can be used in

the multigrid is predetermined. This may be too fine if the geometry is to be captured on

this coarse grid.

The second approach uses non-nested unstructured grids as coarse grids and has been

shown to be quite successful in both two- and three-dimensional unstructured grid compu-

tations [1, 2, 3, 4]. Grids of varying degrees of coarseness are generated independently using

any given grid generation strategy. Piecewise-linear interpolation operators for the transfer-

ence of flow variables, residuals and correction are derived during a preprocessing step by

using efficient search procedures. Since the coarse grids are generated independently from

one another, the coarse grids are not nested with the fine grids and, in general, do not even

contain points in common with the fine levels. A variant of this approach chooses a subset of

the fine grid points and retriangulates them [7]. The grids are still non-nested even though

the coarse grid points are contained in the fine grid.

The approaches outlined above share a common problem, that of generating coarse grids.

For complex geometries, especially in three dimensions, constructing coarse grids that faith-

fully represent the complex geometries can become a difficult proposition. In other words,

there comes a point when the critical features of geometry are too fine to be captured by

the coarse grid, with the result that the geometry or sometimes even the topology is altered.

The requirement to generate not just one grid but multiple grids that preserve the geometry

places too much of a burden on a user. One approach that circumvents this problem is the

generation of coarse grids through agglomeration as developed by Lallemand et al. [8] and

independently by Smith [9]. Lallemand et al. use a base scheme that stores the variables at

the vertices of the triangular mesh, whereas Smith uses a scheme that stores the variables

at the centers of triangles. In the present work, a vertex-based scheme is employed. Two-

dimensional triangular grids contain twice as many cells as vertices (neglecting boundary

effects), and in practice, three-dimensional tetrahedral meshes contain 5 to 6 times more

cells than vertices. Thus, on a given grid, a vertex scheme incurs substantially less com-

putational overhead than a cell-based scheme. Increased accuracy may be expected from a

cell-based scheme, since this involves the solution of a larger number of unknowns. However,

the increase in accuracy does not appear to justify the additional computational overheads,

particularly in three dimensions.
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The central idea behind the agglomeration strategy of Lallemand et al. [8] is to fuse

or agglomerate the control volumes for the vertices using heuristics. The centroidal dual,

composed of segments of the median planes of the triangulation, is a collection of the control

volumes over which the Euler equations in integral form are solved. For simple geometries and

on relatively coarse grids, Lallemand et al. were able to show that the agglomerated multigrid

technique performed as well as the multigrid technique which makes use of non-nested coarse

grids. However, the convergence rates, especially for the second order accurate version of

the scheme, appeared to degrade somewhat. Furthermore, the validation of such a strategy

for more complicated geometries and using much finer grids, as well as the incorporation

of viscous terms for the Navier-Stokes equations remains to be demonstrated. The work

of Smith [9] constitutes the basis of a commercially available computational fluid dynamics

code, and as such has been applied to a number of complex geometries [10]. However,

consistently competitive multigrid convergence rates have yet to be demonstrated.

In the present work, the agglomeration multigrid strategy is explored further. The issues

involved in a proper agglomeration and the implications for the choice of the restriction

and prolongation operators are addressed. Inviscid flows over non-simple two and three-

dimensional geometries involving a large number of unknowns are solved with the agglom-

eration multigrid strategy. This approach is compared with the unstructured multigrid

algorithm of [1, 2] which makes use of non-nested coarse grids. Convergence rates as well as

CPU times on a Cray Y-MP/1 are compared using both methods.

2 Governing equations and discretization

The Euler equations in integral form for a control volume 12 with boundary 0f_ read

-_ udv+ aF(u'n) dS=O"
(1)

Here u is the solution vector comprised of the conservative variables: density, the compo-

nents of momentum, and total energy. The vector F(u, n) represents the inviscid flux vector

for a surface with normal vector n. Equation (1) states that the time rate of change of the

variables inside the control volume is the negative of the net flux of the variables through

the boundaries of the control volume. This net flux through the control volume boundary is

termed the residual. In the present scheme, the variables are stored at the vertices of a mesh

composed of simplices i.e., triangles in two dimensions and tetrahedra in three dimensions.

Most of the description in the paper willdeal with the three-dimensional situation, the reduc-

tion to the two-dimensional situation being obvious. The control volumes are nonoverlapping

polyhedra which surround the vertices of the mesh. They form the dual of the mesh, which

is composed of segments of median planes. Associated with each edge of the original mesh is

a (segmented) dual face. The contour integrals in Equation (1) are replaced by discrete path

integrals over the faces of the control volume which are computed by using the trapezoidal

rule. This technique can be shown to be equivalent to using a piecewise-linear finite-element

discretization. Using edge-based data structures, the path integrals can be cast as a loop

over the edges, even in three dimensions as shown by Mavriplis [2]. For dissipative terms,

a blend of Laplacian and biharmonic operators is employed, the Laplacian term acting only
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in the vicinity of shocks.A multi-stage Runge-Kutta schemeis usedto advancethe solution
in time. In addition, local time stepping,enthalpy damping and residual averagingareused
to accelerateconvergence.In previouswork [1, 2], as well as in the present work, only the
Laplaciandissipative term (with constant coefficient)is usedon the coarsegrids. Thus, the
fine grid solution itself is secondorder accurate,while the solveris only first order accurate
on the coarsegrids.

3 Details of agglomeration

The object of agglomeration is to derive coarse grids from a given fine grid. In graph

theoretical terms, if the initial grid is interpreted as a graph, the agglomeration problem is

that of finding a maximal independent set with certain desirable properties. A subset of the

vertices of a graph is termed an independent set if no two vertices in the set are adjacent. An

independent set is mazimaI if any vertex not in the set is dominated by(adjacent to) at least

one vertex in it. A desirable property for the coarse grids in multigrid is that the number of

grid ceils should decrease by a nearly constant factor when moving from a fine to a coarse

grid. This factor is 4 in two dimensions and 8 in three dimensions. The graph problem

reduces to finding the maximal independent graph with the minimum cardinality(size) and

is nP complete. Hence, a heuristic algorithm is used to derive the coarse grids.

The agglomeration is accomplished by using a greedy-type frontal algorithm. It is a

variation on the one used by Lallemand et al. [8]. We call this the isotvopic version, since it

fuses in Step 2 all the neighboring fine grid control volumes that are not already fused. It is
outlined below:

1. Pick a starting vertex on one of the surface elements.

2. Agglomerate the control volumes associated with its neighboring vertices which are

not already agglomerated.

3. Define a front as comprised of the exterior faces of the agglomerated control volumes.

Place the exposed edges (duals to the faces) in a queue.

4. Pick the new starting vertex as the unprocessed vertex incident to a new starting edge

which is chosen from the following choices given by order of priority:

• An edge on the front that is on the solid wall.

• An edge on the solid wall.

• An edge on the front that is on the far field boundary.

• An edge on the far field boundary.

• The first edge in the queue.

5. Go to Step 2 until the control volumes for all vertices have been agglomerated.

There are many other ways of choosing the starting vertex in Step 4 of the algorithm,

but we have found the above strategy to be the best. The efficacy of the agglomeration



algorithm can be characterizedby a histogram of the number of fine grid cells comprising
each coarsegrid cell. In two dimensions,ideally, each coarsegrid cell will be made up of
exactly four fine grid cells. The variousstrategiescan beevaluatedby how closethey come
to this ideal situation. Onevariation is to pick the starting edgerandomly from the edges
currently on the front. Figure 1 showsa plot of the numberof coarsegrid cellsasa function
of the number of fine grid cells they contain for a triangular mesh with 11340 vertices, with

the agglomeration algorithm described above, and with the variant. It is clear that our

agglomeration algorithm is superior to the variant. The number of singletons (coarse grid

cells having exactly one fine cell) is also much smaller with our algorithm compared to the

variant. We have also investigated another variation of the algorithm where the starting

vertex in Step 4 is randomly picked from the field; this turns out be much worse. It is

possible to identify the singleton cells and agglomerate them with the neighboring cells, but

this has not been done. Finally, it should be noted that with the isotropic version of the

algorithm, one has no _ontrol over the shapes or the aspect ratios of the coarse grid cells.
In order to have some control over the aspect ratios of the coarse grid cells, we have

developed a variant loose.ly termed the semi-coarsened version. Th_s is slmdar m sprat to

semi-coarsening for highly stretched structured grids, where the coarsening is done in the

direction of stretching. The algorithm produces more uniform coarse grids and is expected to

be beneficial especially for viscous calculations. This algorithm is a combination of breadth-

first and depth-first searches and is-more expens_vetlh_an the isotropic version. In the semi-

coarsened version, Steps 2 aria 3 of the isotropic algorithm are replaced by the following

steps:

1. For each starting vertex, form a list of neighboring control volumes.

2. Fuse the contro 1 volume from the list that maximizes the aspect ratio of the coarse

grid cell defined as V/S", where V iS the volume, S is the surface area and n is 2 in
two dimensions and 1.5 in three dimensions.

3. Update the front by adding the exposed edges (duals to the exposed faces) to the

queue.

4. Update the list of neighboring control volumes.

5. Go to Step 2 until a prespecified number of control volumes are fused into a coarse

grid cell.

We compare the two versions of the agglomeration algorithm by inspecting the coarse

grids obtained on a small test problem. The fine grid about an NACA0012 airfoil contains

4224 vertices. The third-level coarse grids obtained with the isotropic and the semi-coarsened

algorithms are displayed in Figures 2 and 3, and they contain 80 and 72 cells, respectively.

The grid obtained with the semi-coarsened version is more uniform and has more favorable

aspect ratios. =
A three-dimensional application of the isotropic agglomeration algorithm is shown in

Figures 4(a-C). The fine grid about an ONERA M6 wing contains 9428 vertices. Figure

4a shows the dual to the surface grid. The coarse grids contain 1466, 253 and 46 vertices,

respectively_ Figures 4b and 4c show the level-1 and level-3 surface grids:
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Theproceduresoutlined above are applied recursively to create coarser grids. The bound-

aries between the control volumes on the coarse grids are composed of the edges/faces of

the fine grid control volumes. In two dimensions, we have observed that the number of such

edges only decreases by a factor of 2 when going from a fine to a coarse grid, even though the

number of vertices decreases by a factor of 4. Since the computational load is proportional

to the number of edges, this is unacceptable in the context of multigrid. However, if we

recognize that the multiple edges separating two control volumes can be replaced by a single

edge connecting the end points, then the number of edges does go down by a nearly a factor

of 4. This is illustrated in Figure 5 which shows the fine grid edges (solid lines), fine grid

dual edges (dashed lines) and the edges for the coarse grid control volumes (thick solid lines).

The edges connecting A and B can be effectively replaced by a single straight edge shown

by the thick dashed line. A similar approximation can be made in three dimensions as well.

Since only a first order discretization is used on the coarse grids, there is no approximation

involved in this step. If a flux function that involved the geometry in a nonlinear fashion

were used, such as Roe's approximate Riemann solver [11], this is still a very good approx-

imation. As a result of this approximation, the work decreases by nearly a constant factor

when moving from a fine to a coarse grid.

Both versions of the algorithm have been optimized to run in linear time. They employ

hashing to combine the multiple fine grid control volume faces separating two coarse grid

cells into one planar face. This has enabled us to run very large three-dimensional problems

(tetrahedral grids with over 800,000 vertices) in a reasonable amount of time. The semi-

coarsened version is more expensive than the isotropic version, but creates more uniform

grids. The three-dimensional versions of the algorithm require 1200 bytes of memory per

fine grid vertex on a Sun Sparc 10 workstation. The times required to create four coarse grids

by agglomeration from a three-dimensional tetrahedral grid with 50,000 fine grid vertices on

this workstation are 63 and 128 seconds with the isotropic and the semi-coarsened versions,

respectively. The output of the agglomeration is a list of fine grid cells belonging to each

coarse grid cell and edge coefficients, which represent the projected areas of the planar

contol-volume faces onto the coordinate planes.

4 Details of multigrid

The base scheme needs to be modified to handle arbitrary polyhedral coarse grids. The

time step calculation and the computations of the Euler and dissipative fluxes are recast in

such a way as to only utilize the volumes and the edge coefficients. In the original scheme,

an isotropic dissipative coefficient based on the spectral radius integrated over the control

volume faces was used. For very coarse and highly nonuniform polyhedral grids, we have

had to use a dissipative coefficient based on the spectral radius for each face in order to

obtain stable coarse grid operators. Another Way to ensure a stable coarse grid operator is

to formulate a first order Roe's upwind solver for polyhedral grids [12], but was found to be

considerabl3_ more expensive [13].

Since the fine grid control volumes comprising a coarse grid control volume are known,

the restriction is similar to that used for structured grids. The residuals are simply summed

from the fine grid cells and the variables are interpolated in a volume-weighted manner. For

5



the prolongation operator, we use a simple injection (a piecewise-constant interpolation).
This is an unfortunate but an unavoidable consequence of using the agglomeration strategy.

A piecewise-linear prolongation operator implies a triangulation, the avoidance of which is

the main motivation for the agglomeration. In actuality, the agglomeration procedure itself

implies a triangulation. In inspecting Figure 5 which shows an agglomerated coarse grid, we

notice that three dual edges meet at every vertex, such as A or B. Thus, each vertex in this

figure represents a triangle made up of the three vertices representing the three coarse grid
cells. However, we have found this triangulation to be invalid in general with a number of

crossing grid lines, especially near the trailing edges of the airfoils. Another possible way to

achieve a piecewise-linear interpolation is to utilize the gradient that is computed in a least

squares sense by making use of data from some defined neighborhood of the coarse grid cell.

We do not follow either of these approaches because of their associated complexity. The

adverse impact of the injection is minimized by employing additional smoothing steps. This

is achieved by applying an averaging procedure to the injected corrections. In an explicit

scheme, solution updates are directly proportional to the computed residuals. Thus, by

analogy, for the multigrid scheme, corrections may be smoothed by a procedure previously

developed for implicit residual smoothing [1]. The implicit equations for the smoothed

corrections are solved using two iterations of a Jacobi scheme after prolongation at each grid

level.

The agglomeration procedure can be interpreted as a Galerkin coarse grid approximation

[14]. If the fine grid operator can be written as

Au = f, (2)

the Galerkin coarse grid approximation can be derived as

A_ - f (3)

with

= RAP, (4)

and

? = Rf. (5)

Here R and P are the restriction and prolongation operators, u is the fine grid vector and

is the coarse grid vector. In the case of agglomeration, both R and P are chosen to be

piecewise-constant operators. Note that the scaling of R is immaterial in this formulation.

Agglomeration can thus be-viewed as identifyingal-1 the fine g rid_el!s with:t]_e coarSegrid

cell to which they bel0ng, and then Summing the equations corresponding to these cell s.

Interpreted in this manner, agglomeration multigrid is similar to algebraic muItigrid [15]

except that the equations to be combined are prespecified.

5 Results and discussion

Representative two- and three-dimensional flows are computed over geometries with varying

degrees of geometrical complexity. F_rst, _results are presented for a two-dimenSi0nai flow

6
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problem. The performance of the agglomerated multigrid algorithm is compared with that of

the non-nested multigrid algorithm [1, 2]. Inviscid flow over a four-element airfoil in landing

configuration is computed. The freestream Mach number is 0.2 and the angle of attack is 5%

The fine grid has 11340 vertices and its dual is shown in Figure 6. The coarse grids for use

with the non-nested multigrid algorithm (not shown) contain 2942 and 727 vertices. It was

not possible to generate coarser grids for this complex geometry. Four agglomerated coarse

grids obtained using the isotropic version of the algorithm are shown in Figure 7. These grids

contain 3027, 822, 217 and 63 vertices (regions), respectively. The convergence histories of the

non-nested and agglomeration multigrid algorithm are shown in Figure 8. The convergence

histories of the three-level multigrid are comparable but the convergence is slightly better

with the agglomerated multigrid strategy. This is a bit surprising since the original multigrid

algorithm employs a piecewise-linear prolongation operator. A possible explanation is that

the coarse grids created by the agglomeration algorithm are better than those employed

in the non-nested algorithm. Convergence improves considerably with the 5-level multigrid

algorithm. The CPU times required on the Cray Y-MP for the 3-level multigrid are are 59

and 60 seconds with the original and the agglomerated algorithms, respectively. The CPU

time required for the 5 level agglomeration multigrid is 73 seconds. The convergence rate per

work unit with the 3-level non-nested multigrid algorithm is 0.940. The convergence rates per

work unit with the 3-level and 5-level agglomerated multigrid algorithm are 0.938 and 0.920,

respectively. We also observe in Figure 8 that there is only a slight difference in convergence

rates between the two versions of the agglomeration algorithm. The convergence rates per

multigrid cycle with the isotropic and semi-coarsened versions of the agglomeration algorithm

are 0.898 and 0.894, respectively for the 5-level multigrid scheme. Similar behavior has been

observed in most of our two- and three-dimensional computations. This is not surprising

since the aspect ratios of the cells for these Euler grids are quite benign. The payoff, we

believe, will be in the computation of viscous flows, where cell aspect ratios of 1000 are

typical. Nevertheless, in the rest of the section, all the coarse grids have been derived using

the semi-coarsened version of the algorithm.

We next present results from three-dimensional calculations of flows over geometries of

increasing complexity. The first flow considered is transonic flow over an ONERA M6 wing

at a freestream Mach number of 0.84 and an angle of attack of 3.06 °. The geometry consists

of the wing delimited by a symmetry plane. The mesh was generated using the advancing-

front grid generation technique [16].The grid contains 357,900 vertices and just over 2 million

tetrahedra. However, due to limitations in printing resolution, we only display in Figure 9

the surface mesh corresponding to a coarser grid with 53,961 vertices. The semi-coarsened

agglomeration algorithm is used to generate five coarse grids. These coarse grids contain

62594, 13033, 3105, 804, and 54 vertices, respectively. Figure 10 shows the Mach contours

on the surface where the familiar double shock pattern for this standard test case may be

observed. The convergence rate of 0.878 per cycle is achieved which is comparable to the

rate of 0.871 achieved by Mavriplis [2] with 4-level non-nested full multigrid procedure for

the same case. The final solution is identical to that obtained by Mavriplis [2] since the

same fine mesh discretization is employed. This particular solution has also been shown to

be in good agreement with other inviscid computations for this case [2]. The convergence

history for the 6-level multigrid using the five agglomerated coarse grids is shown in Figure

11. The residuals are reduced by six orders of magnitude in 100 W-cycles, which required



55 minutes of CPU time and 44 MW of memory on the Cray Y-MP/1. By comparison, the

single grid run resulted in a residual reduction of merely 3 orders of magnitude in 400 cycles.

A complete multigrid cycle requires about 80% more CPU time than the driving single grid

cycle and a 30% increase in memory requirements.

The next case involves the solution of inviscid transonic flow over a low-wing transport

configuration. The geometry consists of a half fuselage bounded b, a s: .netry plane with a

wing and a nacelle. The fine mesh for this case contains 804,056 vertices and approximately

4.5 million tetrahedra. Again, due to limitations in prining resolution, only the surface

mesh for a coarser mesh with 106,064 vertices is depicted in Figure 12. This computation

represents one of the largest unstructured grid cases attempted to date. However, this is

believed to be representative of the type of resolution required for engineering calculations for

configurations of this type. Six coarse grids are derived by the semi-coarsened agglomeration

algorithm and contain respectively, 132865, 25489, 5678, 1421, 373 and 99 vertices. The

freestream conditions are Mach number of 0.77 and and 1.116 ° incidence. The convergence

history using a seven-level agglomerated multigrid strategy is shown in Figure 13. The

residuals are reduced by over 6 orders of magnitude in 100 W-cycles, which corresponds to a

convergence rate of 0.876 "per cycle. This compares favorably with the rate of 0.870 obtained

using a 5-level non-nested multigrid strategy for the same case. The agglomerated multigrid

computation required 96 MW of memory and 90 minutes of CPU time on a Cray Y-MP/1

computer. The computed Mach contours are depicted in Figure 14 where the upper surface

wing shock pattern is evident.

Finally, we consider flow over a fuselage-wing-flap geometry. This case, which has the

additional complexity of a flap system, is representative of a Simplified Boeing 737 landing

con_guration geometry. The fine grid contains 134,539 vertices and the surface mesh is shown

in Figure 15. This mesh was provided by the author of reference [17]. While the grid is too

coarse to provide accurate engineering results for this geometry, this case has been included

to illustrate the power of the agglomeration technique in handling complex geometries. The

small gap sizes between neighboring flap elements restrict the effectiveness of traditional

multigrid methods. In the non-nested mesh approach for example, th e coarsest meshes must

contains cells small enough to resolve these gaps, or risk altering the geometry. For the

agglomeration approach, on the other hand, these restrictions are completely removed. We

have constructed five coarse agglomerated grids of 22238, 4043, 810, 205 and 52 vertices.

The topology of the geometry is allowed to change on these coarse grids; the interpretation

of agglomeration as an algebraic technique (cf. Equation (3)) guarantees the validity of the

procedure in this case. For a freestream Mach number of 0.4 and 0 ° incidence, the 6-level

agglomeration strategy results in a residual reduction of 5.5 orders of magnitude in 100

W-cycles for a convergence rate of 0.885 per cycle. This rate is consistent with the rates

obtained in the previous cases. The convergence history for this case is displayed in Figure

16. It should be noted that engineering accuracy for the cases shown in this paper can be

achieved in fewer than 50 multigrid Cycles.



6 Conclusions

It has been shown that the agglomeration multigrid strategy can be made to approximate

the efficiency of the unstructured multigrid algorithm using independent, non-nested coarse

meshes, both in terms of convergence rates and CPU times. It is further shown that arbi-

trarily coarse grids can be obtained with the agglomeration technique, although care must

be taken to ensure that the coarse grid operato r is convergent on these grids. The agglom-

eration itself is done very efficiently as a preprocessing step. It has been shown that the

agglomeration algorithm can be tailored to achieve desired coarse grid properties. Applica-

tions to flows over complex configurations have been provided to illustrate the power and

flexibility of the agglomeration multigrid strategy.
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Figure 1: Number of coarse grid cells vs the number of fine grid cells they contain.
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Figure 2: Third-level coarse grid obtained with the isotropic agglomeration algorithm for a

fine grid with 4224 vertices.
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Figure 3: Third-level coarse grid obtained with the semi-coarsened agglomeration algorithm

for a fine grid with 4224 vertices.
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Figure 4: Surface grids (a) Dual to the fine grid having 9428 vertices (b) Level-1 coarse grid

(c) Level-3 coarse grid
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Figure 5: An example of an agglomerated coarse grid.
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Figure 6: Dual to the fine grid having 11340verticesabout a 4-elementairfoil.
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Figure 7: Four agglomerated coarse grids for the four-element test case.
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Figure 8: Convergence histories with the agglomerated and original multigrid. NMG - Non-

nested multigrid; AMG - Agglomerated multigrid using the isotropic algorithm; AMGSC -

Agglomerated multigrid using the semi-coarsened algorithm.
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Figure 9: Surface mesh for a coarse grid with 53,961 vertices about an ONERA M6 wing.
The fine mesh has 357,900 vertices.
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Figure 10: Mach contours on the surface for transonic flow over the ONERA M6 wing using

the fine grid.
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Figure 11: Convergence history of the 6-level agglomerated multigrid scheme for the ONERA
M6 wing case.
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Figure 12: Surface mesh for • coarse grid with 106,064 vertices about a low-wing transport

configuration. The fine mesh has 804,056 vertices.
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Figure 13: Mach contours on the surface for transonic flow over the low-wing transport
configuration.
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Figure 14: Convergence history of the 7-level agglomerated multigrid scheme for the low-wing

transport case.
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Figure 15: Surface mesh for a grid with 134,539 vertices about a fuselage-wing-flap geometry.
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Figure 16: Convergence history of the f-level agglomerated multigrid scheme for the fuselage-

wing-flap geometry.
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